Preview only show first 10 pages with watermark. For full document please download

Wp3.3 Extended Cavities With Fixed Holograms

   EMBED


Share

Transcript

57-mJ multi-Hz multipass laser amplifier based on Yb:CaF2 Crystals Florence Friebel*1, Alain Pellegrina2, Dimitris N.Papadopoulos2, Patrice Camy3, Jean-Louis Doualan3, Richard Moncorge3, Patrick Georges1, Frédéric Druon1 1. Laboratoire Charles Fabry, Institut d'Optique (LCF), CNRS, Univ. Paris Sud, Palaiseau, France 2. Laboratoire d’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, Palaiseau, France 3. Centre de Recherche sur les Ions, les Matériaux et la Photonique(CIMAP), Caen, France [email protected] JNCO – Cherbourg – June 11th 2013 http://www.lcf.institutoptique.fr/lcf-en Outline • Cilex-Apollon project • High-energy Yb:CaF2 multipass amplifiers • High energy multipass amplifier at 20 Hz • Thermal survey of crystals at 100Hz • Conclusion JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2 2 Apollon 10 PW laser Front End OPCPA based 10fs,100mJ, >20Hz Amplification Stages based on Ti:Sa 300 J @ 800 nm Compressor 15 fs, 150 J @ 800 nm, 1pulse/mn Pump Laser Nd:glass 0.8 KJ, 1pulse/mn LABORATOIRE CHARLES FABRY JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 3 3 The Apollon front end source Signal source @ 800 nm Ti:Sapphire CPA 25 fs, 1.5 mJ Nonlinear pulse compression/cleaning <10 fs, CR>1012 800 nm OPCPA Multi-stages based on BBO crystals Ti:Sapphire oscillator < 7 fs 1030 nm Diode pumped high energy amplifiers based on Ytterbium doped crystals J range@ 515 nm by SHG >20 Hz < “10 fs” stretched to > 1 ns 100 mJ, >20 Hz Pump source @ 515 nm JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 4 4 1030-nm CPA chain 1030 nm injection Ti:Sapphire oscillator …to OPCPA signal @800nm ~4 pJ@1030nm YDFA Yb:KYW regen. 2mJ BS Yb:YAG regen (M.B.I.) >200 mJ 100Hz Compr. ~16 ps Picosecond Stage Stretcher, 0.5ns/nm ps-OPCPA SHG ~60% Nanosecond Stage MP1 MP2 MP3 CaF2 Yb:CaF2 Yb:CaF2 >20 mJ, >20 Hz ~200 mJ, >20 Hz JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en SHG >50% >80 mJ, ~12 ps 100 Hz @515 nm ns-OPCPA J,~1.5 ns >20 Hz @515 nm 5 5 Material for high-energy amplifiers • New revival of an old Crystal Yb:CaF2 • Large Bandwidth (<100fs) • Good thermal conductivity(~YAG) • Long fluorescence lifetime (2.4 ms) − − Low Emission cross section Low gain W. Humphreys, Astrophysical Journal, 266 (1904) A. Lucca, et al. Opt. Lett. 1879 (2004) A. Lucca, et al. Opt. Lett. 2767 (2004) M. Siebold, et al. Opt. Lett., 2770 (2008). F. Friebel, et al. Opt. Lett.,1474–1476 (2009) F. Druon, et al. IEEE Photonics Journal Vol. 3, 2, 268 (2011) F. Druon, et al. Opt. Material Exp. 1, 489 (2011) JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 6 6 Outline • Cilex-Apollon project • High-energy Yb:CaF2 multipass amplifiers • High energy multipass amplifier at 20 Hz • Thermal survey of crystals at 100Hz • Conclusion JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 7 7 Experimental setup 115cm 30cm ROC: 2m 980nm, 400W, 20 Hz, 2,25 ms, 1.8 J, 36 W 1:3.75 Yb:CaF2 2mm,2,2% Npass = 8 S-pulse Yb:KYW regenerative amp. 1kHz, 2mJ, 3-5nm,1030nm λ/2 Output Reinjection …~pJ @1030nm from the Ti:Sapphire oscillator JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 8 8 Experimental setup 115cm 30cm ROC: 2m 980nm, 400W, 20 Hz, 2,25 ms, 1.8 J, 36 W JNCO 2013 – M12 Yb:CaF2 2mm,2,2% Npasses =8 Output 53mJ,100Hz λ/2 3.1nm, 1030nm Reinjection x2 1:3.75 Total Npasses = 16 http://www.lcf.institutoptique.fr/lcf-en S-pulse Yb:KYW regenerative amp. 1kHz, 2mJ, 3-5nm,1030nm …~pJ @1030nm from the Ti:Sapphire oscillator 9 9 Outline • Cilex-Apollon project • High-energy Yb:CaF2 multipass amplifiers • High energy multipass amplifier at 20 Hz • Thermal survey of crystals at 100Hz • Conclusion JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1010 Simulation-Expected output Stored energy & extraction efficiency estimation Population inversion level in the CaF2 Crystal 980nm, 400W, 20 Hz, 2,25 ms, 1.8 J, 36 W E out (J) E stored (J) Operating point Number of passes • Stored energy estimation: Esto~150mJ (Ep~1.2J, Δtpump~ 2,25 ms) • With: Np.max = 15  Eout,theory > 60 mJ JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1111 Results EFirst pass / mJ Eout / mJ Eout / mJ 57,4 mJ Einjection / mJ • Eout~57,4 mJ @ 20 Hz , Np~15, Einput ~1,1mJ Gain is 32 JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1212 Beam Quality Output Excellent beam quality M2 ~ 1.1 •30 min running @ 50 mJ •The pointing stability<20μrad JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1313 Temperature Profile 30 28 26 24 22 20 18 16 14 Trace 1) Trace 2) Trace 3) heat HR – coating Heat spreader AR-coating Temperature / Cº Active mirror Temperature / Cº Local surface temperature profile at maximum pumping Image By Thermal Camera (7.5 – 13 µm) Surface of CaF2-Crystal in Mount (right) (Below) Heat conduction on the crystal for pumping from 0 - 400 W in three steps • max. surface temperature 28 ºC (max. increase of +15 ºC) 30 28 26 24 22 20 18 16 14 1) 28 ºC 1) 28 ºC 2) 23 ºC 2) 23 ºC Good thermal management Low heating 3) 15 ºC 0 2 4 6 Time/ min JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 3) 15 ºC 8 1414 Spectrum •∆λ=3.1 nm, FTL~600 fs (∆t~1.5 ns) / Injection spectrum limited JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1515 Outline • Cilex-Apollon project • High-energy Yb:CaF2 multipass amplifiers • High energy multipass amplifier at 20 Hz • Thermal survey of crystals at 100Hz • Conclusion JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1616 Thermal Profile Trace across diameter of crystal including the central heating part Temperature / Cº 30 28 26 24 22 20 18 16 14 Temperature / Cº Local surface temperature profile at maximum pumping Image By Thermal Camera (7.5 – 13 µm) Surface of CaF2-Crystal in Mount (right) (Below) Heat conduction on the crystal for pumping at 400 W • max. surface temperature 28 ºC (max. increase of +15 ºC) 30 25 20 18 16 14 Cooling very efficient Using the active mirror configuration - from the backside JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1717 Thermal lens measurement Dioptric Power [ m-1] Thermal lens dependency on pump power Thermal lens 100 Hz Incident pump power [W] The thermal lens is POSITIVE JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1818 Thermal lens: Positive ? BUT Our hypothesis Crystal in active mirror configuration « Bilame » effect AR-coating (thin= softer) HR – coating (thick= harder) Yb:CaF2 heat Add an asymetric mechanical distortions Even with thermooptic coefficient cCaF2 < 0 JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 1919 Thermal lens: Dynamics Pump [a.u] Dioptric power variation [%] Measurement of the instantaneous thermal lens Time / ms Thermal lens Theoretical current JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en Fluorescence Pump 2020 Thermal lens: Dynamics Pump [a.u] Temporal delay between thermal lens and heat load The thermal load follows the fluo and not the pump ! JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2121 Thermal lens: Dynamics Temporal delay between thermal lens and heat load View from the energetic scheme We have to wait for the fluorescence before the heating Fluo Pump Quasi exclusive heat source Non-radiative deexcitation = HEAT JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2222 Outline • Cilex-Apollon project • High-energy Yb:CaF2 multipass amplifiers • High energy multipass amplifier at 20 Hz • Thermal survey of crystals at 100Hz • Conclusion JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2323 Conclusion • High energy multipass amplifier Eout = 57 mJ • Repetition Rate 20 Hz • Excellent beam quality M2 ~ 1.1, with 16 Passes • The crystals handle 100 Hz heat load • Positive thermal lens : active mirror≠brewster crystal • Thermal lens dynamic linked to fluorescence shape Current stability issues: management of the fluorescence irradiation that could heat the closest mounts to the crystal => air turbulences. JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2424 Merci pour votre attention JNCO 2013 – M12 http://www.lcf.institutoptique.fr/lcf-en 2525